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Abstract

We consider the following combinatorial problem: given an n x m {0, 1}-matrix M, find a
minimum cardinality set S of mergings between neighboring rows or columns that yields an
all-zeros matrix. Here, merging means performing a component-wise AND operation. We prove
that this NP-hard minimization problem is factor-2-approximable by relating it to the VERTEX
COVER problem on bipartite graphs.

1 Introduction

The combinatorial problem that we study in this paper comes from the area of statistical
database security. For the benefit of a reader, we first present the problem from the database
security point of view, and we then provide a formal mathematical definition of it.

Statistical database security is concerned with protecting confidentiality of individual data
values that are used for statistical purposes. With the recent expansion of computer and in
particular networking technologies, huge volumes of personal data are regularly collected by
companies, hospitals, government departments and various organizations. These include medi-
cal, criminal, shopping and taxation records, to mention just a few. At the same time, public is
becoming increasingly concerned about confidentiality of such personal data. Statistical database
security focuses on protecting the confidentiality, while at the same time making data available
for statistical research. '

For the purpose of this study, a database can be seen as a multidimensional matrix where
each dimension corresponds to a particular attribute (property) of the records stored in the
database. For example, a two dimensional database M might have attributes “Age” and “Years
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of service”, in addition to a confidential attribute “Salary”. The element m;; of M in row ¢
and column j contains the number of all employees who are 4 years old and who have j vears
of service in the company. We refer to elements of M which are equal to 0 as holes, those that
are equal to 1 as single elements and those that are greater than 1 as multielements. A range
query is defined as a contiguous submatrix of M. Each range query provides not only the total
number of records contained in the elements of the corresponding contiguous submatrix, but
also the sum of “Salary” (confidential attribute), in all such elements. The database M is said
to be compromised if there exists a linear combination of range queries that contains precisely
one record, in which case the value of the confidential attribute in that record can be learned by
an unauthorized party. Our goal is to prevent a database compromise, while at the same time
allow as many range queries as possible. The problem is further complicated by the so-called
supplementary knowledge that assists intruders in compromising the database {10].

If all the elements in an m-dimensional database contain at least one record, that is, if the
database contains no holes, then the fraction of queries that can be answered without exact
disclosure of any individual value is bounded from below by (2™ — 1)/2™ [9]. The minimum is
achieved in the case where there is precisely one record for each combination of attribute values,
that is, when a database matrix contains only ones (or single elements). A precise formula for
the usability of one-dimensional databases with arbitrary elements in the database matrix is
given in [3], and databases with holes were considered in [11]. In this paper we explore merging
neighboring rows or columns in order to eliminate all elements that contain holes. Once we have
arrived at a database without holes, we know from [9] that we can keep the data secure while
achieving very high usability by allowing only “even” range queries, that is, those queries that
are represented by contiguous sub-matrices with even number of single elements. Clearly, our
goal in the preprocessing is to minimize the number of row or column mergings necessary for
eliminating all holes in the matrix.

How does a matrix in our example look like after this preprocessing ? Rows will now carry
interval labels [i1,72]. This means that the corresponding matrix entries report all employees
of age between i; and iy years. Similarly, columns will carry interval labels [j1,j2]. Range
queries of the form: “How many people are employed that are aged between i and #/ ?” can
only be exactly answered if there are numbers 1; < i3 < ... < 1y such that ¢ = 41, ¢ = 4,, and
[t1,%9], [t2 + 1,143], ..., [fe—1 + 1,4¢] are interval labels of consecutive rows in the preprocessed
matrix. (Similar comments apply to the columns.) Other range queries can only be answered
approximately.

In this paper, we restrict the problem to two dimensions and we ask the following question:
What is the minimum number of neighboring rows and columns that we have to merge in order
to eliminate all elements that contain holes? We now present the mathematical formulation of
the problem. Note that in our formulation, zeros in the database matrix are represented by 1
while positive integers are represented by 0, to be consistent with [7].

Minimum Matrix Row/Column Merging MRCM:

Instance: nx m {0,1}-matrix M

Solution: A set S of mergings between neighboring rows
or columns such that the resulting matrix contains
all zeros. Here, merging means performing a

' component-wise logical AND.

Measure: Cardinality |S| of the set S.

This problem was shown to be NP-hard and ﬁxed—parameter tractable [7].! In this paper
we show that MRCM is factor-2-approximable, this way improving on the 3-approximability of
MRCM as shown in [7] by using a different approach.

'Refer to [2, 6, 8] for the basic notions of approximability, parameterized and classical complexity, respectively.
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This means that, given an instance M of MRCM, we can find in polynomial time a solution
S (l.e., a set of merging operations) such that | S|/ |Sopt] < 2, where Spp; is a minimum solution of
the instance M (i.e., minimal in terms of cardinality of the solution). Notice that, since MRCM
is NP-hard, it is not expected that we can find a (deterministic) polynomial-time algorithm that
optimally solves any given instance.

2 Approximation algorithm

A given database matrix M € {0,1}"*™ can be interpreted as the “adjacency” matrix of a
bipartite undirected graph Bj;. In By, we have row vertices T1,...,7n and column vertices
C1,...,Cm, Where r; and ¢; are connected by an edge if and only if M [2,75] = 1. Let us associate
{rs,7i+1} to the operation RM(3,7 + 1) of merging rows ¢ and i + 1, and similarly {eisciv1} to
the operation CM(4,7 + 1) of merging columns ¢ and i 4+ 1. Let A(S) denote the set of vertices
of Bys associated to a set S of merging operations. Then, we can show:

Lemma 1: Let M be an instance of MRCM and let S be a solution to this instance. Then, A(S)
is a vertex cover set of Bys with |A(S)| < 2|9].

Proof: To show that A(S) is a vertex cover of By; we only need to show that all ones in M
are contained in the set A(S) of rows and columns. Indeed, if there were a one outside of these
rows and columns, then that one would remain one even after all merging operations from S are
performed and thus S would not be a solution of M. Thus every edge in By is adjacent to a
vertex in A(S) and A(S) is a vertex cover of Byy. To see that |A(S)| < 2|9|, recall that each of
the merging operations from S is associated with a set of two vertices from Bjs. As A(S) is the
union of all || such sets, it clearly has the cardinality at most 2|S]. 0

Interestingly, the converse of Lemma 1 is not true in general: A vertex cover of B n does not
necessarily give a solution for MRCM. For example, if By is a complete bipartite graph, the
set of all the row vertices is a vertex cover of B)s; on the other hand, M is the all-ones matrix
and as such does not have a solution at all. More generally, if By, contains a vertex in, say,
the row-partition which is adjacent to all the vertices in the column-partition, then the column-
partition is a vertex cover of By while the intuitively “equivalent” merging of all columns is not
a solution to the corresponding MRCM-instance M. However, in all the other cases a vertex
cover of By can be converted to a solution of MRCM as we shall see in what follows.

The algorithmic significance of Lemma 1 is that VERTEX COVER can be solved in polynomial
time on bipartite graphs by maximum matching technique and we shall use this fact to construct
a factor-2-approximation algorithm for MRCM.

Before we can present an algorithm, we need to introduce some auxiliary notation. Let M
be an (n x m) {0,1}-matrix and let V* be a minimal vertex cover of the associated bipartite
graph Bj;. We select a row vertex and a column vertex in By that are not in V* and we denote
them as rr and c¢, respectively. If V* contains all the row vertices or all the column vertices,
weset R=nand C =m.

We are now ready to propose an algorithm based on Lemma 1. The algorithm has 3 parts.
In Part 0 we check whether the matrix M contains only ones, in which case the instance is not
solvable and we are done. In Part 1 we process all the lines (rows and columns) of the matrix M
which contain only ones. Note that we are building the set S of mergings and at the same time
we are performing the actual mergings in the matrix M. Part 2 deals with a matrix that has
no lines completely filled with ones. In this part we only build the set S but we do not perform
any actual mergings in the matrix M.

For the sake of simplicity, throughout the algorithm we use integers (i.e., i) to denote the
indices of the rows and columns in M. We shall later be much more precise and we shall denote
a row obtained by merging rows r; and 7,41 by r;41. In general, 5.k would denote a row
obtained by merging rows r;,7;41,...,7x. Then merging rows Tk and r; s, where l =k +1
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gives the row r; ;. When merging, we add M R(k,!) to the set S. Also, when comparing indices
Jj--k and l...s in Part 2 of the algorithm we say that j...k < [...s if and only if k < [.

Given: {0,1}-matrix M.

//Part 0.
If M contains only ones, the instance is not solvable ~» abort.

//Part 1.
Initialize solution § := 0.
While
there is an all-ones line ¢
whose neighboring line j contains a zero
do
S := SU {merge-lines(i,)};
merge lines 7 and j in M;
//now there is no line completely filled with ones
If M contains only zeros, then return S.

//Part 2.
Solve VERTEX COVER on B)s, yielding a minimum solution V*.
Determine integers R,C from Bj)s (as described in the main text).
For each r; € V* do
if ¢ < R then §:=SU {merge-rows(s,i+ 1)}
else §:=5U {merge-rows(i — 1,i)};
For each ¢; € V* do
if ¢ < C then §:=S5U {merge-columns(i,i+ 1)}
else §:= SU {merge-columns(i —1,7)};
return S

To show the correctness of Part 1, observe that whenever a line completely filled with ones
has two neighboring lines which contain a zero, then it does not matter which of the two lines
we choose for merging, as the resulting matrices are the same in both cases. Thus that this kind
of nondeterminism in the algorithm can be arbitrarily fixed.

We illustrate the above algorithm with the following example.

S

My, =

NS
= =

3
1
1
0
0

IS
e R
[ Y

4

As M does not contain only ones the algorithm proceeds to Part 1. Row 2 contains only
ones and as such it is merged with a neighboring row, say row 3. Thus we have a new matrix

12 8 J
1 /0110
23 10 1.0 1
4/ \1 100

and a set S = {RM(2,3)}. After processing column 2 we get, for example, a matrix
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12 3 4
1 01 0
23 | 0 0 1
4 1 00

and S = {RM(2,3), CM(L, 2)}.

Now there are no more lines that contain only ones and we proceed to Part 2 of the al-
gorithm. We have a bipartite graph Bj; where Vp,, = {r1,7r23,74, 12, ¢3,c4} and Ey,, =
{(r1,¢3), (23, ¢4), (4, €12)}, and a minimum vertex cover V* = {r1,74,¢3}. Then rg = ro3 and
there are two possibilities for c; we select, for example, cc = ¢4. We now process all the vertices
in V*.
ri: As 1 <23 we have S := S U {RM(1,2)}.
r4: As 4 > 23 we have § := SU {RM(3,4)}.
c3: As 3 < 4 we have S:= S U {CM(3,4)}.

The algorithm returns
S = {RM(1, 2), RM(2, 3), RM(3,4), CM(1, 2), CM(3,4)}.

Alternatively, as solution to the VERTEX COVER instance By, we could have obtained V* =
{r1,7r23,r4}. Then, we select rp = 74 and cc = ¢4 (in fact, arbitrary in the column case). As
the reader can verify,

S = {RM(1,2), RM(2, 3), RM(3,4), CM(L, 2)}

would then have been found, which is indeed optimal.

3 Main result

In this section we first prove that the above algorithm yields a feasible solution to MRCM and
then that it is a factor-2-approximation algorithm.

Lemma 2: Let M be an instance of MRCM. Let S be obtained by the algorithm above. Then,
S is a feasible solution to this instance.

Proof: We may assume that M contains at least one zero as otherwise MRCM has no solutions.
Part 1 of the algorithm deals with all-ones lines. After Part 1 of the algorithm, M will either
contain only zeros, in which case S is indeed a solution and our proof is complete, or M will
contain some ones but no all-ones lines. We thus need to show that, for such a matrix M, Part
2 of the algorithm yields a solution S.

In order to prove this we introduce a partial ordering on the set of (n x m) {0, 1}-matrices
as follows. We say that M’ < M" if and only if M'[i,j] = 1 implies M"[i,j] = 1 for all i € [1,n]
and all j € [1,m]. Note that if M’ < M” and if S is a solution of the MRCM-instance M”,
then § is also a solution to M.

Consider now a matrix M and two neighboring lines 7 and j in A/. We introduce some
further notations. Let M; be a matrix obtained from M by deleting line i. Let M;; be a matrix
obtained from M by merging lines i and j. Then M; < M; and M;; < M;.

We are now ready to complete our proof. Recall that V is a set of rows and columns of
M that contain all the ones in M. Thus deleting all the rows and columns in V yields an
all-zeros matrix. From the above discussion it follows that is we replace each deletion with a
unique merging then the resulting matrix would also contain only zeros. If V does not contain
all the rows or all the columns of Bj; then the row rr and the column cc guarantee that no
two deletions are associated with the same merging. In the case where V contains all the rows
(or all the columns, respectively) of M, we have only n — 1 (m — 1, respectively) mergings and
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n (m, respectively) deletions, but it is easy to see that the resulting matrix still contains only
zeros, as the original matrix has no all-ones lines. Note that n > 2, m > 2 and thusn - 1> 1
and m — 1 > 1, because a matrix with a single row or a single column would be completely
processed in Part 0 or Part 1 of the algorithm as it either contains a line completely filled with
ones or it is an all-zeros matrix. This completes the proof. a

Theorem: The sketched algorithm is a factor-2-approximation algorithm.

Proof: The first part of the algorithm deals with all-ones lines and optimally treats them, since
a line completely filled with ones can never be converted into an all-zeros line only by using
merges of “orthogonal lines,” e.g., an all-ones row cannot be converted into an all-zeros row by
using column-mergings only.

Moreover, merging with an all-ones line has exactly the same effect as deleting that line;
thus, it does not matter which neighbor we merge it with. So we now assume that an instance
M has no lines completely filled with ones.

Let 5* be a minimal solution of this MRCM-instance M. Then, A(S*) is a solution of the
VERTEX COVER instance Bys. An optimal solution V* to By surely satisfies

V| < [A(S7)] < 2|57

according to Lemma 1. Conversely, Lemma 2 shows that the set of merging operations S obtained
from V* by the algorithm is indeed a feasible solution to the instance M. It is easily observed
that

1S) <|V*.
Altogether, we can see that |S| < 2|5%|. O

4 Conclusion

In this paper we have considered an NP-hard problem called MRCM that arises in the area of
statistical database security. We presented an algorithm for solving this problem and we showed
that it is a factor-2-approximation algorithm.

This approach is different from the typical local ratio approach for covering problems, see
[4]. Rather, we use a related problem, namely VERTEX COVER, to solve MRCM. It would be
interesting to see if the local ratio approach (or the likewise successful integer linear program-
ming approach) can be used to obtain similar or maybe better approximation ratios for MRCM.
Alternatively, it might be worthwhile looking into other kinds of reductions between approxi-
mation problems not only from the point of view of proving hardness results but also from an
algorithmic perspective.
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